4762 Mark Scheme June 2008

4762 Mechanics 2

Q 1		mark	comment	sub
(a) (i)	In i direction: $6u - 12 = 18$ so $u = 5$ i.e. 5i m s ⁻¹	M1 E1	Use of I-M Accept $6u-12=18$ as total working. Accept 5 instead of 5i.	
	either In i direction: $0.5v + 12 = 0.5 \times 11$ v = -13 so -13 i m s ⁻¹ or $6 \times 5 + 0.5$ $v = 6 \times 3 + 0.5 \times 11$ v = -13 so -13 i m s ⁻¹	M1 B1 A1 M1 A1 A1	Use of I-M Use of + 12i or equivalent Accept direction indicated by any means PCLM Allow only sign errors Accept direction indicated by any means	5
(ii)	Using NEL: $\frac{11-3}{-13-5} = -e$	M1	Use of NEL. Condone sign errors but not reciprocal expression	
	$e = \frac{4}{9} (0.\dot{4})$	F1 F1	FT only their -13 (even if +ve) FT only their -13 and only if -ve (allow 1 s.f. accuracy)	3
(iii)	In i direction: $-2 \times 7 = 0.5v - 0.5 \times 11$ $v = -17 \text{ so } -17 \text{ i m s}^{-1}$ or -2 i = 0.5 a so $a = -4 \text{ i m s}^{-2}$ $v = 11 \text{ i} - 4 \text{ i} \times 7$ $v = -17 \text{ so } -17 \text{ i m s}^{-1}$	M1 M1 A1 A1 M1 A1 M1 A1	Use of I = F t Use of I = m(v -u) For ±17 cao. Direction (indicated by any means) Use of F = ma For ±4 Use of uvas t cao. Direction (indicated by any means)	4
(b)	$u \mathbf{i} + e v \mathbf{j}$ $\tan \alpha = \frac{v}{u}, \ \tan \beta = \frac{e v}{u}$ $\tan \beta = e \left(\frac{v}{u}\right) = e \tan \alpha$	B1 B1 M1 B1 E1	For <i>u</i> For <i>ev</i> Use of tan. Accept reciprocal argument. Accept use of their components Both correct. Ignore signs. Shown. Accept signs not clearly dealt with.	
	(u)	17		5

(ii) $\begin{array}{c} 2 \\ 2.6 \\ 3.4 \\ \hline \end{array}$ $\begin{array}{c} 3.6 \\ 3.6 \\ \hline \end{array}$ $\begin{array}{c} 3.6 \\ 2+(6-3.4) \\ \end{array} = \arctan \left(\frac{3.6}{4.6} \right) \\ \end{array}$ $\begin{array}{c} 3.6 \\ 3.4 \\ \hline \end{array}$ $\begin{array}{c} 3.6 \\ 2+(6-3.4) \\ \hline \end{array}$ $\begin{array}{c} 3.6 \\ 3.6 \\ \hline \end{array}$ $\begin{array}{c} 3.6 \\ 3.4 \\ \hline \end{array}$ $\begin{array}{c} 3.6 \\ 3.6 \\ \hline \end{array}$ $\begin{array}{c} 3.6 \\ 3.4 \\ \hline \end{array}$ $\begin{array}{c} 3.6 \\ 3.6 \\ \hline \end{array}$ $\begin{array}{c} 3.6 \\ 3.6 \\ \hline \end{array}$ $\begin{array}{c} 3.6 \\ 3.4 \\ \hline \end{array}$ $\begin{array}{c} 3.6 \\ 3.6 \\ \hline \end{array}$ $\begin{array}{c} 3.6 \\ 3.6 \\ \hline \end{array}$ $\begin{array}{c} 3.6 \\ 3.4 \\ \hline \end{array}$ $\begin{array}{c} 3.6 \\ 3.6 \\ \hline \end{array}$ $\begin{array}{c} 3.6 \\ 3.4 \\ \hline \end{array}$	Q 2		mark	comment	sub
(ii) $\frac{3.6}{3.4} = \arctan\left(\frac{3.6}{2+(6-3.4)}\right) = \arctan\left(\frac{3.6}{4.6}\right)$ (iii) $\arctan\left(\frac{3.6}{2+(6-3.4)}\right) = \arctan\left(\frac{3.6}{4.6}\right)$ B1 Diagram showing G vertically below D 3.6 and their 3.4 correctly placed (may be implied) M1 Use of arctan on their lengths. Allow recipro of argument. Some attempt to calculate correct lengths needed B1 $2+(6-$ their 3.4) seen cao (iii) $\frac{1}{5\times3.6-6\times T_{BP}}$ so tension in BP is 3 N Resolve vert: $3+T_{DQ}=5$ so tension in DQ is 2 N (iv) We require x -cpt of c.m. to be zero either $(20+L)\bar{x}=20\times3.6-\frac{1}{2}L^2$ or	(i)	$20\left(\frac{\overline{x}}{\overline{y}}\right) = \begin{pmatrix} 18 + 36 + 18\\ 18 + 36 + 14 \end{pmatrix} = \begin{pmatrix} 72\\ 68 \end{pmatrix}$ $\overline{x} = 3.6$	B1 B1 B1 E1	Total mass correct For any of the 1 st 3 RHS terms For the 4 th RHS term	6
$5 \times 3.6 = 6 \times T_{\rm BP} \text{ so tension in BP is 3 N} \\ \text{Resolve vert: } 3 + T_{\rm DQ} = 5 \\ \text{so tension in DQ is 2 N} \\ \text{F1} \\ \text{FT their values if calc 2nd} \\ \text{Resolve vertically or moments about B.} \\ \text{FT their values if calc 2nd} \\ \text{We require x-cpt of c.m. to be zero} \\ \text{either} \\ (20 + L) \overline{x} = 20 \times 3.6 - \frac{1}{2}L^2 \\ \text{or} \\ \text{Or} \\ \text{M1} \\ \text{A method to achieve this with all cpts} \\ \text{M2} \\ \text{A method to achieve this with all cpts} \\ \text{M3} \\ \text{A method to achieve this with all cpts} \\ \text{M4} \\ \text{M5} \\ \text{M6} \\ \text{M8} \\ \text{M8} \\ \text{M8} \\ \text{M9} \\ M9$	(ii)	2.6 3.4 O vertical $\arctan\left(\frac{3.6}{2+(6-3.4)}\right) = \arctan\left(\frac{3.6}{4.6}\right)$	B1 M1	3.6 and their 3.4 correctly placed (may be implied) Use of arctan on their lengths. Allow reciprocal of argument. Some attempt to calculate correct lengths needed 2 + (6 - their 3.4) seen	5
either $(20+L)\bar{x} = 20 \times 3.6 - \frac{1}{2}L^2$ or	(iii)	$5\times3.6=6\times T_{\rm BP}$ so tension in BP is 3 N Resolve vert: $3+T_{\rm DQ}=5$	F1 M1	FT their values if calc 2nd Resolve vertically or moments about B.	4
$2\times6\times(0.5\times6)+6\times6-0.5\times L^2=0$ $L=12$ B1 A1 For the $0.5\times L^2$ All correct	(iv)	either $(20+L)\bar{x} = 20\times3.6 - \frac{1}{2}L^2$ or $2\times6\times(0.5\times6) + 6\times6 - 0.5\times L^2 = 0$	B1 A1	For the $0.5 \times L^2$	4

4762 Mark Scheme June 2008

Q 3		mark	comment	sub
(a) (i)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B1 B1	Internal forces all present and labelled All forces correct with labels and arrows (Allow the internal forces set as tensions, thrusts or a mixture)	2
(ii)	A \uparrow $T_{AD} \sin 30 - L = 0$ so $T_{AD} = 2L$ so $2L$ N (T) A $\rightarrow T_{AB} + T_{AD} \cos 30 = 0$ so $T_{AB} = -\sqrt{3}L$ so $\sqrt{3}L$ N (C) B $\uparrow T_{BD} \sin 60 - 3L = 0$ so $T_{BD} = 2\sqrt{3}L$ so $2\sqrt{3}L$ N (T) B \rightarrow $T_{BC} + T_{BD} \cos 60 - T_{AB} = 0$ so $T_{BC} = -2\sqrt{3}L$ so $2\sqrt{3}L$ N (C)	M1 A1 M1 F1 M1 A1 M1 F1	Equilibrium equation at a pin-joint attempted 1 st ans. Accept + or –. Second equation attempted 2 nd ans. FT any previous answer(s) used. Third equation attempted 3 rd ans. FT any previous answer(s) used. Fourth equation attempted 4 th ans. FT any previous answer(s) used. All T/C consistent [SC 1 all T/C correct WWW]	9
(b)	Leg QR with frictional force $F \leftarrow$ moments c.w. about R $U \times 2l \sin 60 - Wl \cos 60 = 0$ Horiz equilibrium for QR $F = U$ Hence $\frac{1}{2}W = \sqrt{3}F$ and so $F = \frac{\sqrt{3}}{6}W$	M1 A1 A1 M1	Accept only 1 leg considered (and without comment) Suitable moments equation. Allow 1 force omitted a.c. moments c.w. moments A second correct equation for horizontal or vertical equilibrium to eliminate a force (U or reaction at foot) [Award if correct moments equation containing only W and F] * This second equation explicitly derived Correct use of 2 nd equation with the moments equation Shown. CWO but do not penalise * again.	7
		18		1

Q 4		mark	comment	sub
(a) (i)	Tension is perp to the motion of the sphere (so WD, $Fd \cos \theta = 0$)	E1		1
(ii)	Distance dropped is $2-2\cos 40 = 0.467911$ GPE is <i>mgh</i> so $0.15 \times 9.8 \times 0.467911 = 0.687829$ J	M1 E1 M1 B1	Attempt at distance with resolution used. Accept $\sin\leftrightarrow\cos$ Accept seeing $2-2\cos40$ Any reasonable accuracy	4
(iii)	$0.5 \times 0.15 \times v^2 = 0.687829$ so $v = 3.02837$ so $3.03 \text{ m s}^{-1} (3 \text{ s. f.})$	M1 F1	Using KE + GPE constant FT their GPE	2
(iv)	$\frac{1}{2} \times 0.15 (v^2 - 2.5^2)$	M1	Use of W-E equation (allow 1 KE term or GPE term omitted)	
		В1	KE terms correct	
	$=0.6878290.6\times\frac{40}{360}\times2\pi\times2$	M1	WD against friction	
	$v = 2.06178$ so $2.06 \text{ m s}^{-1} (3 \text{ s. f.})$	A1 A1	WD against friction correct (allow sign error) cao	5
(b)	N2L down slope: $3g \sin 30 - F = 3 \times \frac{1}{8}g$	M1 A1	Must have attempt at weight component Allow sign errors.	
	so $F = \frac{9g}{g}$ (= 11.025)	A1		
	$R = 3g \times \frac{\sqrt{3}}{2}$ (= 25.4611)	B1		
	$\mu = \frac{F}{R} = \frac{\sqrt{3}}{4}$ (= 0.43301)	M1	Use of $F = \mu R$	
	к 4	E1	Must be worked precisely	6
		18		